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Evidence for a structural phase transition from rutile α-CrO2 phase I (P42/mnm) to 

orthorhombic β-CrO2 phase II (CaCl2-like, Pnnm) is presented using angle-resolved 

synchrotron x-ray diffraction and high sensitivity confocal Raman spectroscopy.  The 

transition to the CaCl2 structure, which appears to be second-order, occurs at 312± GPa 

without any measurable discontinuity in volume, but is accompanied by an apparent 

increase in compressibility.  Raman data are also presented to show further evidence for 

a second-order structural phase transition as well to demonstrate soft-mode behavior of 

the B1g phonon mode. 

 

PACS numbers: 62.50.+p, 61.10.Nz, 64.30.+t, 64.70.Kb  
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1. Introduction 

 

Chromium dioxide (CrO2) has many properties of interest to both the scientific 

community and industry.  It was first introduced as a magnetic recording media in 1974 

mainly due to its relatively high coercivity but has received much more recent attention 

for its unique electronic properties.  First suggested to be half-metallic by Schwarz1, CrO2 

has been studied extensively both theoretically and experimentally and has been shown to 

possess near 100% spin polarization at the Fermi level using superconducting point-

contact tunneling experiments.2  Its half-metallic behavior gives rise to relatively low 

electrical resistivity for an oxide, ~300 µΩ-cm (Ref. 3), and is commonly referred to as a 

“bad metal”.  CrO2 is also ferromagnetic at room temperature with a high Curie 

temperature of 390=cT K relative to other candidate half-metals.  These two properties, 

along with it’s already wide availability, make CrO2 scientifically and technologically 

important and an ideal material for developing spintronic devices.   

 

CrO2 is also one of the simplest known half-metals and crystallizes into the rutile 

structure at ambient conditions, a structure commonly found in many metal dioxides 

(MO2; M = Ti, Cr, Mn, Sn, Ge, Pb, etc.).  The rutile structure consists of tetragonally 

distorted edge-sharing MO6 octahedra (see Fig. 1), one of the most fundamental building 

blocks of covalently bonded network structures found in hard materials and earth 

minerals like stishovite.  Larger metal ions (ie, M = W, Re, Mo, etc), however, tend to 

form an eight-fold coordinated calcite (CaF2) structure while smaller ions (M = C, Si, 

etc.) crystallize into a four-fold coordinated tetrahedral structure. At high pressures, the 

rutile structure typically transforms to another six-fold coordinated structure, CaCl2, or 

the α-PbO2 structure found in shock compressed SiO2 and known as a post-stishovite 

structure.4  The smaller four-fold coordinated SiO2 transforms into the six-fold rutile 

structure, stishovite. Therefore, to the first approximation these pressure-induced 

structural transitions may be understood in the simple view of topological packing of 

hard spheres, i.e. an increase in the coordination number and the associated electrostatic 
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interaction at high densities. At high pressures, however, the electronic structure also 

changes in a significant way and so does the nature of electron interaction, becoming 

more repulsive and dominated by electron kinetic energy.  As a result, the characteristics 

of these MO2 transitions could be more complex than is evident from their rather 

continuous manner, occurring without any structural or volume discontinuity. The rutile 

structure has even been found in the molecular solid CO2-II
 at high pressures and 

temperatures.5 Furthermore, the electronic contribution to structural stability is significant 

in transition metal oxides at high pressures, as is evident from the Mott insulator-metal 

transitions6,7, charge transfer transitions8, valence transitions, etc. 

 

In the present work, we present a high-pressure structural study of CrO2 using 

synchrotron x-ray diffraction and Raman spectroscopy.  Evidence for a second-order 

structural transition at 312± GPa from rutile α-CrO2 phase I to orthorhombic β-CrO2 

phase II, accompanied by an increase in compressibility, is presented as well as evidence 

for soft-mode behavior in the Raman spectrum.  A second phase transition is also 

suggested from anomalies in the x-ray and Raman data around 30 GPa.  Finally the 

transition pressure for CrO2 is investigated in the context of other known rutile-CaCl2 

transitions at high pressure.   

 

2. Experimental Procedures 

Powdered α-CrO2 was obtained commercially under the name Magtrieve from DuPONT 

and loaded into Livermore-designed diamond-anvil cells(DACs) in order to achieve 

pressures up to 50 GPa.  Two samples were prepared for x-ray diffraction experiments.  

One sample was loaded into a 130 micron hole in a Re gasket attached to the piston anvil 

of a membrane-type cell.  Mineral oil was used as a pressure transmitting medium and Au 

powder was added for pressure determination.  The other sample was loaded into the 160 

micron hole of a Re gasket attached to the piston anvil of a LLL cell along with several 

small Ruby chips for pressure determination using the Ruby fluorescence method.35  The 

cell was then placed into a Janis Research continuous-flow He cryostat modified for He 

loading into the LLL cell.  Liquid He was allowed to accumulate well above the top of 

the cell and then the pressure was reduced in the cryostat until superfluid He was 
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obtained.  The cell was then opened briefly to allow a small amount of liquid He to leak 

in and then sealed.  A larger sample hole was used, as well as a thicker indentation, to 

allow for a ~30% volume compression of the liquid He upon loading.   

 

Angle-dispersive x-ray diffraction (ADXRD) data was performed at beamline 16ID-B, 

HP-CAT at the APS at Argonne National Laboratory using 3680.=λ  Å x-rays.  The 

synchrotron x-ray beam was focused down to 12x12 microns using a pair of long (0.5 m) 

Kirkpatrick-Baez bimorph x-ray mirrors and the partial Debye-Scherrer rings were 

collected on a Mar345 image plate.  Raw x-ray diffraction data was integrated with fit2D9 

and analyzed using XRDA and GSAS.  Le Bail whole-profile fitting was used to obtain 

lattice parameters and profile coefficients and then a Rietveld refinement was performed 

to obtain internal oxygen coordinates.  Background removal was done manually due to a 

very irregular amorphous background that was difficult to fit. 

 

For Raman measurements, powdered CrO2 along with several small Ruby chips for 

pressure determination was loaded into the 140 micron hole drilled in a Re gasket 

attached to the piston anvil of a LLL-type cell. The cell was then lightly closed and 

immersed in liquid argon.  After the cell came into thermal equilibrium with the 

surrounding Ar liquid it was then opened briefly to capture a small quantity of Argon for 

use as the pressure transmitting medium. Mineral oil was not used due to the broad, 

amorphous background generated during previous Raman attempts.  Helium was also not 

used due to the high initial loading pressures required to ensure liquid He capture. 

 

Raman spectra were obtained using a confocal micro-Raman system designed for 

maximum light collection.  A single stage spectrometer was used for spectra collection 

along with a pair of Kaiser Supernotch holographic filters for rejection of the Rayleigh 

scattered light.  The 532 nm second harmonic of a diode pumped Nd:VO4 laser was used 

for Raman excitation.  The spot size at the sample was <10 µm.  During previous Raman 

attempts with a conventional Raman setup, sample heating due to the high (100-200 mW) 

laser powers required would cause a change in oxidation from CrO2 to Cr2O3.
10 These 

high laser powers were required because the black color and half-metallic nature of the 
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material made the Raman scattered signal very weak.  A lower laser power can be used in 

such a system, however the long collection times would reduce the density of data points 

and increase the error in pressure measurement as some cell relaxation occurs during the 

course of a measurement.  A system with high sensitivity was needed to reduce incident 

laser power to <30 mW while keeping the collection time down to 5 minutes. 

 

A. X-ray Diffraction 

At ambient conditions α-CrO2 crystallizes into the rutile structure (P42/mnm, Z=2) with 

lattice parameters 421.4== ba  Å and 916.2=c  Å, and atomic position of Cr(2a) at 

(0,0,0) and O(4f) at (u,u,0) with 301.0=u .11  The rutile structure, shown in Fig. 1(a)(b)  

consists of chains of distorted edge-sharing CrO6 octahedra along the c-axis with the Cr 

ions forming a body-centered tetragonal lattice.  This distortion can work to either 

flatten(apical bonds are shorter than the equatorial bonds) or elongate(apical bonds are 

longer than the equatorial bonds) the CrO6 octahedra along their axes.  The positions of 

the oxygen atoms are determined by the fractional coordinate, u, which sets the Cr-O 

distances and determines the size and nature of the distortion.  Figure 2(a) shows a 

Rietveld refinement of α-CrO2 performed at 7.7 GPa showing a good agreement with the 

rutile structure with lattice parameters 3710.4== ba (1) Å and 8967.2=c (1) Å, and 

294.0=u (1).  At this value of u the CrO6 octahedra is flattened along apical direction 

with Cr-O distances of 1.809 Å and 1.928 Å for the apical(2) and equatorial(4) bonds, 

respectively.   

 

At 8.12  GPa an orthorhombic distortion was detected by the splitting of )(hkl diffraction 

lines with kh ≠  as shown in Fig. 1(b) with the split (hkl)’s shown in bold.  This is 

consistent with the structural transition from rutile to CaCl2 (Pnnm, Z=2) crystal 

structures observed in other rutile-type oxides such as MnO2 (Ref. 12), RuO2 (Ref. 13), 

SiO2 (Ref. 14), GeO2 (Refs. 15, 16), SnO2 (Refs. 17, 18) and PbO2 (Ref. 19).  The CaCl2 

crystal structure consists of chains of distorted edge-sharing CrO6 octahedra along the c-

axis with the Cr ions forming a body-centered orthorhombic lattice and is shown in Fig. 

1(c).  The position of the oxygen atom is now described by two fractional coordinates ux 

and uy.  The Reitveld refinement Fig 2(b) of β-CrO2 at 14.0 GPa shows good agreement 
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with the CaCl2 structure with lattice parameters 3874.4=a (4) Å, 2818.4=b (4) Å, and 

8779.2=c (2) Å, and ux=0.299(1) and uy=0.272(1). 

 

Figure 3 shows lattice constants obtained using a Le Bail whole-profile fit as a function 

of pressure with a dotted vertical line showing the transition pressure.  The diffraction 

data from the mineral oil sample suffered from broadening of diffraction lines above 9 

GPa, due to non-hydrostatic conditions inside the sample chamber20, and made 

refinement difficult to converge.  Therefore, we only present data below 9 GPa for this 

sample as shown in Fig 3.  On the other hand, the diffraction data obtained using He as a 

pressure medium stayed well resolved up to the highest pressure obtained.  Below the 

transition pressure the compressibility of the a-axis using mineral oil and He are very 

close, with the He sample showing a slightly higher compressibility.  The c-axis, 

however, shows a much lower compressibility when using He as a pressure medium, 

although it is clear that both curves extrapolate back to the previously reported value at 

0=P .  A change in compressibility at 12.8 GPa is observed for the c-axis while the area 

conserving quantity ab  follows smoothly from the a-axis across the transition.  There 

is also a small but apparent change in compressibility of the c-axis at ~25-30 GPa.  This 

change may be a signature of an second phase transition.  Additional evidence supporting 

a second phase transition was observed in our Raman data in this pressure range and is 

discussed below.      

 

The pressure vs. volume data of α- and β-CrO2 phases are plotted up to 50 GPa in Fig. 4, 

identifying the transition pressure 38.12 ±=cP .  Below Pc the mineral oil and He data 

agree well, resulting in a nearly identical P-V curve.  Above Pc an anomalous increase in 

the compressibility occurs.  This is in contrast to most materials becoming stiffer with 

pressure.  The experimental PV curves for α-CrO2 was fit to the 3rd-order Birch-

Murnaghan21 equation of state  
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with 4'
0;

0 =






=
=PTdP

dB
B and V0 fixed at the previously reported value of 56.99 A3 (Ref. 

11) which yielded a value of 22390 ±=B  GPa for the zero pressure bulk modulus.  The 

high pressure β-CrO2 phase was also fit to Eq. (1) yielding values of 21620 ±=B  GPa 

and 1.1.580 ±=V  Å3 for the zero-pressure bulk modulus and unit cell volume 

respectively.  In addition, we performed Birch-Murnaghan equation of state fits for both 

phases while letting '0B  vary, as well as fits to the Vinet equation of state.  These are 

shown in Fig. 3 and the numerical results of the various fits are summarized in Table I.  

The fits to the low pressure phase all give quite similar answers, however the differences 

between the various equations of state are evident in the high pressure phase.  This is 

primarily due to the lack of data to constrain 0V  as β-CrO2 does not exist at ambient 

conditions.  It is clear, however, that a pronounced softening is evident irrespective of the 

model used to fit the compression data.   

 

B. Raman 

The Raman signal of half-metallic CrO2 is very weak due to the metallic nature of the 

material which, due to a short penetration depth, results in a relatively small scattering 

volume and low number of scattering sites.22  Nevertheless, by using a fast con-focal 

Raman spectroscopy system we were able to obtain relatively high quality Raman spectra 

from powdered CrO2, as shown in Fig. 5, using no more than 30 mW of laser power as 

measured at the sample.  Small features in the Raman spectra below 200 cm-1 are, 

however, obscured because of the use of two holographic notch filters used to prevent 

Rayleigh scattered light from entering the spectrometer, the result of which was both the 

introduction of some small spurious peaks and much reduced transmission below 200 cm-

1. 

 

A factor group analysis gives four Raman-active modes in the rutile structure, 

ggggRaman BBAE 211 +++=Γ .  Previous work by Iliev et. al.22 using polarized Raman 

spectroscopy on single-crystal CrO2 at ambient pressure describes these modes and 

determined the Raman-shifts to be 149 cm-1, 458 cm-1, 570 cm-1, and 682 cm-1 for the B1g, 
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Eg, A1g, and B2g modes.  Figure 4 shows our Raman spectra of CrO2 taken at various 

pressures.  The three peaks at 470 cm-1, 584 cm-1 , and 700 cm-1 shown at 2.8 GPa are 

associated with the Eg, A1g, and B2g modes of the rutile structure.  Unfortunately, we were 

not able to observe the Raman-active B1g shear mode, which has been shown to exhibit 

soft-mode behavior at high pressure in other rutile-CaCl2 (Refs. 14, 18) transitions, due to 

its very weak scattering around 150 cm-1.13 

 

The expected mode behavior for a phase transition from rutile to CaCl2 is a splitting of 

the doubly degenerate Eg mode along with the addition of a new Raman active mode of 

B1g symmetry.13  At 12.4 GPa a new peak appears at 470 cm-1 and the Eg mode begins to 

broaden. By 19.5 GPa a clear splitting of the Eg mode is observed along with an 

additional peak emerging at 162 cm-1.  Mode assignments for phase II are based primarily 

on the correlation between rutile(D4h) and CaCl2(D2h) modes except for the new Raman-

active mode of B1g symmetry which is tentatively assigned to the new peak at 470 cm-1  

and assumed to be accidentally degenerate.  The order of the B2g and B3g modes shown is 

arbitrary as it has been argued that the sign of the spontaneous strain, 

)/()( babaess +−= , determines the ordering.23  Because all our experiments were done 

on powdered samples and not single crystals, the sign of ess is unknown.  It should also be 

noted that a seventh, unassigned peak was observed at 33 GPa, identified with an 

asterisk, showing a variation with pressure consistent with the other, identified peaks.  

The small peak around 185 cm-1 at 41.1 GPa, marked with a cross in Fig. 4, was 

intermittent and did not seem to show any consistent behavior with pressure. This peak is 

therefore attributed to spurious noise caused by the pair of holographic notch filters 

coupled with the background subtraction procedure.   

 

Figure 6 shows the pressure-induced shifts of the observed Raman modes for α- and β-

CrO2.  Although we were unable to directly observe any mode-softening behavior due to 

the weakness of the B1g shear mode in rutile α-CrO2, we can speculate that in order for 

the B1g mode to smoothly connect to the Ag mode there must been some softening.  

Figure 5 shows ambient pressure values obtained from Iliev et. al.22 for all four Raman 

active modes in rutile CrO2 as dark triangles.  It is clear that a smooth curve can be drawn 
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between the ambient pressure values and our data for the Eg, A1g, and B2g modes, but not 

for the B1g mode.  This is further evidence that β-CrO2 takes the CaCl2 since softening of 

the B1g has been seen in many of the rutile-CaCl2 transitions.14,18,15 It should again be 

noted that the unidentified peak showing up at 33 GPa, marked with an asterisk in Fig. 6, 

shows a pressure-induced shift consistent with the rest of the identified modes.   

 

3. Discussion 

The present x-ray data reveal that the rutile-to-CaCl2 transition in CrO2 is a strain-driven, 

2nd-order distortive phase transition.  The crystal structures of both phases (see Fig. 1) 

consist of distorted edge-sharing CrO6 octahedra where the degree of distortion increases 

as you move from α-CrO2 to β-CrO2.  For example, at ambient conditions the four 

equatorial Cr-O bonds in the [110] plane are at 1.917 Å and lie roughly along the c-axis 

while the other two apical Cr-O bonds in the [1-10] plane are at 1.882 Å and lie parallel 

to the ab-plane.  At the onset of the transition at 34.12 ± GPa the disparity in Cr-O 

distances increases to 1.930 Å for the equatorial bond and 1.795 Å for the apical bond.  

This local strain arising from the large disparity in bond lengths along the c-axis and ab-

plane results in a large compressibility along the c-axis with respect to the a- and b-axes 

(see Fig. 2) and an increase of the O-O contact distance to 2.568 Å for β-CrO2 from the 

relatively short 2.488 Å in α-CrO2.  This short O-O distance in α-CrO2 may induce the 

softening of the B1g mode inferred from the present Raman data, shown in Fig. 6, and 

cause a mechanical instability of the rutile structure.24,25 

 

It is often difficult to correctly determine the order of a phase transition through structural 

measurements alone.  Recall that the splitting of the (101) diffraction peak into (101) and 

(011) peaks is seen clearly at 12.8 GPa.  However, broadening of the (101) peak before 

12.8 GPa was also detected which could indicate a continuous second-order transition 

that begins before 12.8 GPa.  This is illustrated in Fig. 3 where a discontinuity in the 

lattice parameters is shown at 12.8 GPa, however extrapolation of the a- and b- axis 

curves from β-CrO2 back to the a-axis from α-CrO2 could indicate a continuous 

transition beginning as low as 10.8 GPa.  Indeed, in many other rutile-type oxides13,17,12 

the transition to the CaCl2 structure has been shown to be second-order with the 
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spontaneous strain, )/()( babaess +−= , as the order parameter.  According to Landau’s 

theory of second-order phase transitions, the order parameter should be proportional to 

2/1)( cPP − .  To examine this possibility, we have plotted 2
sse  vs. pressure in Fig. 7(a).  

Our data appear very linear up to 25 GPa with a fit to a straight line giving a value of 

2.12=cP  GPa.  Above 25 GPa, however, strong deviations from linearity are observed.  

The splitting of the Eg mode in rutile materials has been shown to be directly proportional 

to the spontaneous strain and should therefore also follow a 2/1)( cPP −  scaling.26  The 

square of this splitting is plotted in Fig. 7(b).  We again see good linearity up to 25 GPa, 

giving a value of 0.10=cP  GPa, above which we see deviations.  The agreement with  

2/1)( cPP −  below 25 GPa suggests that this is indeed a second-order transition.  

Although this scaling only rigorously applies near the transition pressure, the deviations 

at 25 GPa coincide with the new Raman peak observed at 33 GPa and the change in 

compressibility of the c-axis, and could indicate the appearance of a new phase.  

However, no indication of a second structural phase transition was found in the x-ray 

diffraction data.  Therefore, further experiments are needed to make a solid conclusion.   

 

The lower value of Pc obtained from our Raman data, compared to x-ray, is likely due to 

the use of different pressure media: argon for Raman and He for x-ray diffraction.  Argon 

is known to provide slightly less hydrostatic conditions than He and therefore could have 

forced the transition to occur at a lower pressure during the Raman experiment.  In 

addition, the larger compressibility of the c-axis observed in α-CrO2 using mineral oil 

compared to that obtained using He, shown in Fig. 2, is also suggestive of a greater strain 

than in He.  It has been shown by Haines et. al.17 that the rutile->CaCl2 transition is very 

sensitive to non-hydrostatic stress and the use of non-hydrostatic pressure media can 

lower the transition pressure by as much as 8 GPa for SnO2.  Therefore, we place the 

transition at 312±  GPa based on the first appearance of a clear splitting of the diffraction 

lines with kh ≠  and estimate the experimental uncertainty to be ~3 GPa due to the 

discrepancy in Pc discussed above.   
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It is interesting to note that extrapolated zero-pressure bulk modulus of β-CrO2 is lower 

than that of α-CrO2 going from 22390 ±=B  to 21620 ±=B  across the phase 

transition(see Fig. 3 and Table I).  Lattice softening is not uncommon for strain-driven 

distortive-type transitions at high pressures, as seen in materials like ReO3 and UO3 

where the softening occurs as a result of “buckling” of the linear Re-O bonds.27,28  As 

previously discussed and shown in Fig. 3, the change in volume compressibility comes 

largely from an increase in compressibility of the c-axis, not from a change in 

compressibility of the ab-plane as evident from the area conserving parameter ab .  A 

similar lattice softening has also been seen during the high-pressure rutile -> α-PbO2 

transition in TiO2 and PbO2 which also involves a large change in the compressibility of 

the c-axis.19,29  In these materials the change in compressibility is due to the way the O-

octahedra link along the c-axis, forming zig-zag edge-sharing chains instead of straight 

edge-sharing chains as in rutile.  This increases the number of distortion mechanisms and 

hence a larger compressibility.  The rutile-CaCl2 transition, however, does not alter the 

way O-octahedra link along the c-axis and may therefore need an alternative explanation 

for the lattice softening.   

 

The tetragonal distortion(apical Cr-O bond is shorter than the equatorial bonds) of the 

CrO6 octahedra introduced in α-CrO2 splits the doubly degenerate eg molecular orbital in 

to a1g and b2g states and splits the triply degenerate t2g orbital into b2g and eg.
30  The 

orthorhombic distortion in β-CrO2 further splits this latter eg orbital into b2g and b3g 

orbitals.  As a result, the two unpaired d-electrons in d2 CrO2 can be paired up in the 

lowest energy d-orbital, either b2g or b3g, in a sufficiently strong crystal field.  This would 

be equivalent to removing the exchange splitting of the up-spin and down-spin d-states 

and increasing the metallic character of CrO2.  Lattice softening due to changes in the 

electronic structure has been seen in a variety of materials.  In the monochalcogenides of 

the rare-earths, such as TmTe, the anomalous increase in compressibility with pressure is 

attributed to continuous 4f-5d electron promotion, resulting in a semiconductor-metal 

transition.31 Shock experiments on liquid D2 indicate a significant increase in 

compressibility accompanying the insulator-metal transition.32  We therefore postulate 
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that the increase in compressibility of CrO2 at 12 GPa may be due to an electronic 

transition from half-metal to metal.  Recent electronic structure calculations support this 

conjecture by showing that the density of state is much more sensitive to changes in the 

c-axis than either the a- or b-axis.   

 

The transition observed in the present study is in accordance with other MO2-type 

transition metal or group-IV dioxides taking the rutile structure.  For example, rutile-type 

MnO2 undergoes a phase transition at 0.3 GPa to the CaCl2 structure and possibly another 

phase transition around 46 GPa to an unknown cubic phase.12  Other materials often 

undergo post-rutile phase transition to structures such as α-PbO2, α-cristobalite, etc.  

Table II summarizes the results for many MO2 compounds.  To compare CrO2 with the 

rutile-type compounds at high pressure and to gain insight into the systematics of these 

transitions we have plotted the metallic ion radii vs. transition pressure in Fig. 8(a).  It 

should be noted that the structural results from Table II were taken from Bolzan et al33., 

however the values for the ionic radii were taken from Shannon and Prewitt34.  The 

values used in [33] are those obtained by Ahrens which do not account for coordination 

number and spin state and, consequently, do not give the correct values for the anion-

cation distances when added together.  We see strong systematics in the group IV metal 

dioxides showing increasing transition pressure with decreasing anion radius.  The 

transition metals, however, show much more complex behavior.   

 

To elucidate the connection between transition pressure and ambient pressure crystal 

structure parameters we have also calculated the degree of MO6 octahedra distortion at 

ambient pressure, defined as )/()( 2121 rrrr +−  where ≡1r apical M-O distance and 

≡2r equatorial M-O distance.   The values are plotted as a function of transition pressure 

in Fig. 8(b).  It suggests that a higher degree of distortion leads to a dramatic increase in 

the stability range of the rutile structure.  α-CrO2, with an ambient pressure value of 

0.00916 agrees well with the other transition-metal compounds.  It should also be noted 

that although the group-IV compounds and transition-metal compounds both follow a 

nearly linear trend, the line of transition-metal compounds is below that of group-IV.  We 

can try to understand this behavior by looking at the B1g vibrational mode frequency, 
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νB1g, at ambient pressure for the various MO2 compounds as a function of transition 

pressure.  This is plotted in Fig. 8(c).  We can see that an increased distortion of the MO6 

leads to an increase in νB1g.  Since the rutile-CaCl2 transition is driven by a mechanical 

instability with the same symmetry as the B1g mode, demonstrated by softening of this 

mode, a material with a higher ambient pressure value for νB1g may take longer to 

transform, leading to a higher value for Pc.  The fact that for a given distortion, the values 

for νB1g for the transition metal oxides are systematically lower, leading to lower values 

for Pc, may be electronic in nature.  The bonding between M-O in the transition metal 

oxides is dominate by it’s partially-filled d-orbitals where in the group IV compounds, 

this same bonding has predominantly p-character. 
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Figure Captions: 

 

FIG. 1.  (a) The edge-sharing octahedra of the rutile structure along the c-axis.  (b) 

Shows rutile-structured α-CrO2 (P42/mnm, Z=2, 421.4== ba  Å, 916.2=c  Å, 301.=u ) 

at ambient conditions projected onto the ab-plane with Cr+4 ions in black and O-2 ions in 

white.  (c) Shows β-CrO2 (Pnnm, Z=2, 425.4=a , 987.3=b , and 683.2=c , and 

ux=0.371 and uy=0.263) at 50.4 GPa.  The transition from α-CrO2 to β-CrO2 involves an 

orthorhombic distortion and a rotation of the CrO6 octahedra about the c-axis.   

 

FIG. 2.. (Color Online) Rietveld refinement of CrO2 x-ray diffraction data taken at 7.7 

and 14.0 GPa.  Open circles show experimental data while red and blue lines show 

calculated spectra and difference spectra, respectively.  Short vertical lines shows 

position of diffraction lines.  (a) shows the structural refinement of rutile α-CrO2, space 

group P42/mnm, while (b) shows the structural refinement of orthorhombic β-CrO2 in the 

CaCl2 structure, space group Pnnm.  Only the strongest (hkl)’s are labeled. (hkl)'s shown 

in bold represent those diffraction lines with kh ≠ which were split during to the 

orthorhombic distortion from tetragonal P42/mnm to orthorhombic Pnnm.  The values 

Rwp, Rp, and expected Rwp were calculated without contributions from the background fit. 

 

FIG. 3. Lattice constants of CrO2 as a function of pressure.  Open and closed circles 

represent data taken with Helium and mineral oil as a pressure medium.  Dark triangles 

are data obtained by Cloud et. al.11. Crosses represent the area conserving quantity ab .  

Vertical dotted line at 12 GPa shows transition from rutile α-CrO2 to orthorhombic β-

CrO2.   

 

FIG. 4. Pressure vs. Volume data for CrO2.  Dotted vertical line shows transition from 

rutile α-CrO2 to orthorhombic β-CrO2. Dark circles are data collected using a He pressure 

medium and dark triangles were collected using mineral oil as the pressure medium.  
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Dotted vertical line denotes transition pressure of 312± GPa.  Error bars are shown when 

uncertainties exceed symbol width.  Various fits are shown using the Vinet and Birch-

Murnaghan equations of state, both with and without fixing B0'=4.  The numerical results 

are summarized in Table 1. 

 

FIG. 5. Raman spectra of CrO2 at 532 nm excitation at various pressures.  At 12.4 GPa 

the broadening of the Eg mode due to a splitting and the appearance of a new mode at 

470 cm-1 are consistent with a phase transition from rutile to CaCl2 structures.  We also 

see the appearance of the Raman active Ag mode in CaCl2 as shown at 19.5 GPa.  The 

asterisk marks an unidentified peak occurring at 32 GPa and persisting up to the highest 

pressure obtained during this experiment.  A broad background has been subtracted from 

all spectra.  The cross marks an intermittent peak caused by a combination of the  

holographic notch filters and the background subtraction and does not shift consistently 

with pressure.   

 

FIG. 6. Plot of CrO2 phonons vs. pressure in the rutile and CaCl2 structures.  Dark 

triangles show ambient pressure values obtained by Iliev et.al.22 on single crystal CaCl2.  

Dark circles represent our data.  Dotted vertical line at 12 GPa denotes the transition from 

tetragonal α-CrO2  to orthorhombic β-CrO2 derived from our experimental data. 

 

FIG. 7. Plot of the square of the (a) spontaneous strain, defined as ( ) )/( baba +− , and (b) 

Eg phonon splitting, defined as ( ) )/( 2121 νννν +− , vs. pressure.  Dotted lines show a 

linear fit of the form )(2
cPPA −  up to 25 GPa giving 00.10=cP  GPa for (a) and 

20.12=cP  GPa for (b).  Deviations from linearity are clear above 25 GPa.   

 

FIG. 8.  (a) Metallic ion radii for select MO6 compounds vs. transition pressure, Pc.  

Open squares show group-IV oxides and dark squares show transition-metal oxides.  

Dotted line serves as a guide to the eye to show the trend of increasing transition pressure 

with decreasing anion radii.  (b) shows plot of the ambient pressure MO6 distortion, 

defined as )/()( baba +−  where ≡a apical M-O distance and ≡a equatorial M-O 
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distance, vs. transition pressure(left axis, squares) and B1g mode frequency(right axis, 

triangles).  Light and dark squares represent the group IV and transition metal oxides, 

respectively.  Dashed lines are linear fits showing increasing transition pressure with 

increasing MO6 distortion.  Inset (c) shows increase of B1g mode frequency with 

increasing distortion. 

 

 

TABLE I. Summary of numerical results from various equation of state fits to our 

experimental PV data.  Numbers shown without error denote values that were fixed 

during the fitting procedure. 

 

TABLE II.  Rutile to CaCl2 transformation pressures and ambient pressure anion radii, 

degree of MO6 distortion, and B1g mode frequencies for various metal oxides.  aAnion 

radii obtained from Ref. [34] for the 4th oxidation state and 6-fold coordination. b 

Structural information for metal oxides at ambient conditions is summarized in Ref. [33]. 
†Transition pressure for rutile to α-PbO2 in TiO2. 
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 Birch-Murnaghan Vinet 

Phase B0 (GPa) B0’ V0 (A
3) B0 (GPa) B0’ V0 (A

3) 

I 2239±  4.0 56.99 2242±  4.0 56.99 

I 10235±  25±  56.99 10235±  26±  56.99 

II 2162±  4.0 1.1.58 ±  3181±  4.0 1.8.57 ±  

II 16143±  7.8.4 ±  4.5.58 ±  16138±  7.8.5 ±  4.6.58 ±  

 

TABLE I.  
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MO2 Comound Transition 

Pressure (GPa) 

Anion radiia 

(Å) 

MO6
b B1g frequency 

(cm-1) 

TiO2
† 7  .745 0.008 141 

CrO2 12.2 .69 0.00916 149 

MnO2 .3 .68 0.00345 - 

RuO2 11.8 .76 0.01126 165 

SiO2 50 .54 0.0145 232 

GeO2 26.72 .68 0.00901 171 

SnO2 11.8 .83 0.00248 158 

PbO2 4 .915 0.00309 - 

 

TABLE II. 

 

 

 


